

СВАРОЧНЫЙ ПОЛУАВТОМАТ PROFI

- MIG-357 DT2
- MIG-507 DT2

РУКОВОДСТВО

ПО ЭКСПЛУАТАЦИИ

Содержание

1.	Меры предосторожности и техника безопасности	3
2.	Комплектация	6
3.	Общее описание	7
4.	Основные характеристики	9
5.	Описание панели	10
6.	Установка и эксплуатация	14
7.	Техническое обслуживание	19
8.	Диагностика неисправностей	20
9.	В помощь сварщику	22
10.	Гарантийный талон	30

Пожалуйста, перед установкой и использованием данного оборудования **внимательно** прочитайте и разберитесь в данном руководстве.

Компания оставляет за собой право вносить изменения в данное руководство, и не обязана предупреждать об этом заранее.

В данном руководстве возможны неточности. Пожалуйста, свяжитесь с нами при их обнаружении.

Руководство по эксплуатации издано 10 октября 2017 года.

1. Меры предосторожности и техника безопасности

Нарушение техники безопасности при проведении сварочных работ часто приводит к самым печальным последствиям – пожарам, взрывам и, как следствие, травмам и гибели людей.

Так же при сварке возможны следующие травмы: поражение электрическим током, ожоги от шлака и капель металла, травмы механического характера.

Для предотвращения всех этих положений важно неукоснительно соблюдать меры предосторожности.

Подготовить рабочее место согласно технике безопасности:

При дуговой электросварке брызги расплавленного металла разлетаются на значительные расстояния, что вызывает опасность пожара. Поэтому сварочные цеха (посты) должны сооружаться из негорючих материалов, в местах проведения сварочных работ не допускается скопление смазочных материалов, ветоши и других легковоспламеняющихся материалов.

Для быстрой ликвидации очагов пожаров рабочее место должно быть оснащено средствами пожаротушения: огнетушитель и емкость с водой, которые должны находиться в легкодоступном месте.

Пожар может начаться не сразу, поэтому по окончании сварки следует внимательно осмотреть место проведения работ: не тлеет ли что-нибудь, не пахнет ли дымом и гарью.

- Необходимо иметь профессиональную подготовку для работы с оборудованием.
- Сварщик должен иметь действующее разрешение для работы со сварочными металлами.
- Сварщик должен пройти медицинское освидетельствование.

Обеспечить необходимую защиту:

- Необходимо проверить изоляцию всех проводов, связанных с питанием источника тока и сварочной дуги, устройства геометрически закрытых включающих устройств, заземление, корпусов сварочных аппаратов. Заземлению подлежат: корпуса источников питания, аппаратного ящика и вспомогательное электрическое оборудование. Сечение заземляющих проводов должно быть не менее 2,5 мм².
- Необходимо использовать различные средства индивидуальной защиты, такие как: сварочные маски, специальную брезентовую одежду, брезентовые рукавицы, кожаные ботинки.
- При сварке необходимо использовать электрододержатели с хорошей изоляцией, которая гарантирует, что не будет случайного контакта токоведущих частей электрододержателя со свариваемым изделием или руками сварщика.
- Необходимо работать в исправной сухой спецодежде и рукавицах. При работе в тесных отсеках и замкнутых пространствах обязательно использование резиновых галош и ковриков, источников освещения с напряжением не выше 6-12 В.
- Необходимо проводить сварочные работы только в хорошо вентилируемых помещениях или использовать вентиляционное оборудование.

Для сведения к минимуму возможности получения травм и увечий, ознакомьтесь с их

причинами и мерами предосторожности:						
T	Электрический ток (может привести к серьезным увечьям или даже смерти). Для предотвращения надо: установить заземление перед началом работы; никогда не дотрагиваться до деталей, подключенных к источнику питания, голыми руками или, находясь в мокрых перчатках или одежде.					
	 Дым и газ (может быть вредным для здоровья). Для предотвращения надо: избегать вдыхания дыма и газа во время сварки; при сварке находиться в хорошо проветриваемом помещении или использовать вентиляционное оборудование. 					
	 Световое излучение (может привести к ожогам и повреждению глаз). Для предотвращения надо: для защиты ваших глаз и тела использовать подходящую сварочную маску и защитную одежду; для защиты наблюдателей использовать подходящие сварочные маски и ширмы. 					
	 Неправильная работа (может быть причиной пожара или даже взрыва). Для предотвращения надо: убедиться в отсутствии легковоспламеняющихся материалов рядом с местом работы, т. к. сварочные искры могут быть причиной пожара; иметь поблизости огнетушитель; не использовать данное оборудование для разогрева труб. 					
oritionallity of the	Большая температура изделия (может привести к ожогам). Для предотвращения надо: не трогать горячее изделие голыми руками сразу после сварки. Дать ему остыть; при длительной сварке необходимо использовать охлаждение.					

	Магнитные поля (оказывают действия на электронные					
	стимуляторы сердца).					
- New	Для предотвращения надо:					
	• людям, имеющим электронные стимуляторы сердца,					
.\ XXXXX	перед работой необходимо проконсультироваться с					
	врачом.					
	Движущиеся части (могут привести к увечьям).					
	Для предотвращения надо:					
	• избегать контакта с движущими частями, например, с					
14.	вентиляторами;					
4.0	• все двери, панели, крышки и другие защитные устройства					
	должны быть закрыты во время работы.					

При проблемах с оборудованием необходимо обратиться к профессиональной помощи:

- Использовать данное руководство при возникновении каких-либо трудностей при установке или работе.
- Обратиться в сервисный центр вашего поставщика для профессиональной помощи, если после прочтения данного руководства у вас все еще остались вопросы.

Производственные условия:

- Сварка должна выполняться в сухой окружающей среде с влажностью не более 90 %.
- Температура окружающей среды должна быть между -10 °С и +40 °С.
- Избегайте сварки под открытым небом, если нет защиты от солнечного света или дождя.
- Избегайте сварки в среде с большим содержанием пыли или коррозийного химического газа.
- Всегда сохраняйте изделие сухим и не помещайте его во влажную землю или лужи.

2. Комплектация

Название	Кол-во	MIG-357 DT2	MIG-507 DT2
Аппарат	1 шт	+	+
Механизм подачи проволоки	1 шт	+	+
Тележка на колесах	1 шт	+	+
Инструментальный ящик	1 шт	+	+
Соединительный кабель (5 м)	1 шт	+	+
Сварочная горелка (3 м)	1 шт	+	+
Клемма заземления (2 м)	1 шт	+	+
Регулятор газовый CO ²	1 шт	+	+
Держатель горелки	1 шт	+	+
Сменные ролики (0,8/1,0 мм)	2 шт	+	+
Сменные ролики (1,2/1,6 мм) *	2 шт	+	+
Токосъемный наконечник (1,2 мм)	2 шт	+	+
Луженый наконечник	1 шт	+	+
Накидной ключ	1 шт	+	+
Руководство пользователя	1 шт	+	+

Комплектация может быть незначительно изменена заводом-изготовителем

^{*} Установлены в механизме подачи проволоки

3. Общее описание

Сварочные полуавтоматы MIG-357 DT2 и MIG-507 DT2 используют углекислоту CO2 как защитный газ для сварки в MIG режиме.

Представляют собой аппарат с механизированной подачей сварочной проволоки, с источником питания переменного тока с номинальным напряжением 380 Вольт, но перемещаемый в процессе сварки вручную. Сварочные полуавтоматы используются для сварки металлических конструкций из различных видов сталей и сплавов. Сварочные полуавтоматы часто можно увидеть в автосервисах, ремонтных мастерских и на строительных площадках. На сегодняшний день полуавтомат - один из наиболее распространенных видов сварочных аппаратов.

В сварочном аппарате используются передовые технологии инвертора для преобразования электрической частоты тока 50/60Гц в более мощную электрическую частоту выше 33кГц через инвертор в сочетании с мощными компонентами, такими как IGBT транзисторы и т. д. После снижения амплитуды колебания частоты за счет выпрямительно-волновой фильтрации применяется широтно-импульсная модуляция (ШИМ) и технология регулирования по замкнутому циклу обратной цепи, получая на выходе стабильный постоянный ток.

Доступны следующие виды сварки:

- Ручная дуговая сварка (ММА)
- Сварка в среде защитных газов (MIG/MAG).

Инверторный сварочный полуавтомат – устройство повышенной частоты.

Высокочастотная составляющая позволяет:

- Снизить его габариты и вес.
- Существенно повысить КПД источника питания.
- Исключить шумовое загрязнение почти полностью, т.к. рабочая частота выше диапазона звуковых частот.
- Обеспечить хорошие технологические свойства.
- Обеспечить широкий предел регулирования.
- Обеспечить низкое потребление энергии.
- Обеспечить хорошие динамические характеристики.
- Обеспечить стабильную дугу.

Преимущества:

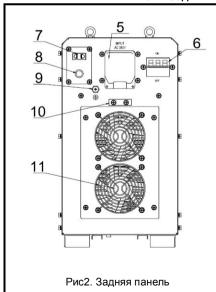
- Высокое качество сварочного шва даже при разнотолщинных свариваемых деталях.
- Сварка малых толщин.
- Широкий диапазон свариваемых материалов (алюминий, магний, титан, никель и др.).
- Зона термического влияния очень узкая, поэтому деталь деформируется очень мало или вовсе не деформируется.
- Простота применения, не требующая высокой квалификации сварщика, ввиду автоматизации процесса.
- Возможность сварки во всех пространственных положениях.
- Устойчивая работа даже от 185 Вольт.
- Наличие цифрового дисплея.
- Увеличенное значение ПН позволяет работать дольше без перерыва.
- Современные технологии управления позволяют настроить сварочный ток в несколько мгновений.

- Минимальное разбрызгивание.
- Сварка короткой дугой.
- Минимальный перегрев свариваемого изделия.
- Высокий КПД и быстродействие.
- Стабильный ток.
- Стабильная скорость подачи проволоки.
- Функция ARC-FORCE кратковременно увеличивает сварочный ток для предотвращения обрыва сварочной дуги.
- Функция ANTI-STICK препятствует залипанию электрода.

4. Основные характеристики

Таблица 1. Основные характеристики

таолица т. Основные характеристики					
Модель	MIG-3	57 DT2	MIG-507 DT2		
Характеристика	MIG	MMA	MIG	MMA	
Напряжение сети (В)		AC380V±1	5% 3 Фазы		
Частота (Гц)	50	/60	50	/60	
Потребляемая мощность (eff), (кВт)	8.65	9.1	14.76	15.2	
Номинальный входной ток (А)	21.9	22.9	37.4	38.4	
Пределы регулирования тока (А)	40-350	40-350	50-500	40-500	
Напряжение без нагрузки (В)	67		77		
Потребление без нагрузки (Вт)	60		60		
Продолжительность нагрузки (%)	60		60		
КПД (%)	85		85		
Коэффициент мощности	0.93		0.93		
Класс изоляции	F		F		
Класс защиты	IP21S		IP21S		
Вес (кг)	35		40		
Габаритные размеры (мм)	622x280x480		622x280x480		


5. Описание панели

5.1 Передняя панель (MIG-357 DT2, MIG-507 DT2)

- 1. Панель управления
- 2. (-) выходной соединительный разъем
- 3. Разъем соединения кабеля управления
- 4. (+) выходной соединительный разъем

5.2 Задняя панель (MIG-357 DT2, MIG-507 DT2)

- 5. Разъем силового кабеля
- 6. Выключатель электросети
- 7. Розетка 36В
- 8. Предохранитель
- 9. Винт заземления
- 10. Фиксирующий паз провода
- 11. Вентилятор

5.3 Описание элементов панели управления

Панель управления

Панель управления, согласно ниже расположенной схеме, служит для выбора функций и настройки параметров. Панель управления включает в себя цифровой дисплей, регулируемую ручку, регулятор и светодиодные индикаторы.

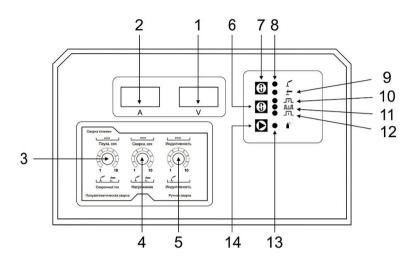


Рис3. Панель управления

1	-	Дисплей показаний напряжения	8	-	MIG индикатор
2	-	Дисплей показаний тока	9	-	ММА индикатор
3	-	Регулятор плавного падения тока завершения / сварочного тока / интервала времени точечной сварки	10	-	2Т индикатор
4	-	Регулятор плавного падения напряжения завершения / тока форсирования дуги / интервала времени точечной сварки	11	-	4Т индикатор
5	-	Регулятор индуктивности	12	-	Индикатор точечной сварки
6	-	Кнопка режимов 2Т/4Т точечной сварки	13	-	Индикатор проверки газа
7	-	Кнопка режимов MMA/MIG	14	-	Кнопка проверки газа

Описание панели

- 7 Кнопка режимов MMA/MIG: при горящем MMA индикаторе осуществляется MMA сварка постоянным током, при горящем MIG индикаторе осуществляется MIG сварка в защитном газе CO2.
- 6 Точечная сварка 2Т/4Т: нажмите кнопку режимов 2Т/4Т для выбора режима 2Т, 4Т и точечная

сварка переключаются в режиме MIG.

- 14 Проверка газа: нажмите на кнопку проверки газа для проверки работы клапанов, клапаны исправны при поступлении газа.
- 4 Регулятор плавного падения напряжения завершения / тока форсирования дуги / интервала времени точечной сварки: регулировка силы тока в режиме ММА сварки, регулировка плавного падения напряжения завершения в режиме МІС сварки, регулировка интервала времени в режиме точечной сварки.
- 3 Регулятор плавного падения тока завершения / сварочного тока / интервала времени точечной сварки: регулировка плавного падения тока в режиме ММА сварки, регулировка скорости подачи проволоки в режиме МІС сварки, регулировка интервала времени точечной сварки в режиме точечной сварки.
- 5 Регулятор индуктивности: Для уменьшения разбрызгивания электродного металла необходимо сжимающее усилие, возникающее в проводнике при коротком замыкании, сделать более плавным. Это достигается введением в источник сварочного тока регулируемой индуктивности. Величина индуктивности определяет скорость нарастания сжимающего усилия. При малой индуктивности капля будет быстро и сильно сжата электрод начинает брызгать. При большой индуктивности увеличивается время отделения капли, и она плавно переходит в сварочную ванну. Сварной шов получается более гладким и чистым
- 1/2 Цифровой дисплей обычно показывает ток и напряжение, также может показать код ошибки аппарата:
 - Е01: Перегрев.
 - Е02: Выход контрольной части поврежден или нет питания
 - Е03: Отсутствует сигнал к плате управления
 - Е04: Внутренняя неисправность

5.4 Настройка параметров

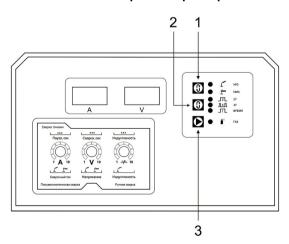


Рис4. Настройка параметров

В нерабочем состоянии (без нагрузки) нажмите кнопки 1 и 2 одновременно и удерживайте в течение 2с и отпустите. Вы войдёте в режим настройки параметров.

Цифровой дисплей «А» отображает параметр - Цифровой дисплей «V» отображает значение параметра.

Назначение клавиш при настройке параметров (Рис4):

- 1 Выбор параметра
- 2 Установка значения выбранного параметра. Значение параметра увеличивается при каждом нажатии кнопки до максимального значения.
- 3 Сохранение настроек и выход из режима настроек.

Параметр	Название параметра	Значение параметра	Значение по умолчанию
P01	Предварительная подача газа перед сваркой	Значение 0-20	0
P02	Подача газа после завершения сварки	Значение 0-20	0
P03	Время завершения	Значение 0-20	0
P04	Скорость подачи проволоки	Значение 1-10	3
P05	Регулировка тока	Регулировка заданной шкалы тока, если значение параметра больше, значение будет меняться быстрее, если вращать регулятор тока.	11
P06	Регулировка напряжения	Регулировка заданной шкалы напряжения, если значение параметра больше, значение будет меняться быстрее, если вращать регулятор напряжения.	11
P07	Интеграция	0: Non-интеграция 1: Интеграция	0
P08	Дисплей показаний тока	0: показывает 100 1: отображает текущее значение	1

6. Установка и эксплуатация

Внимание: устанавливайте аппарат внимательно, согласно шагам, указанным ниже.

Выключайте переключатель тумблера перед любыми работами.

Класс защиты оборудования ІР21, поэтому избегайте работы под дождем.

6.1 Установка

Подключение аппарата к сети

Для подключения аппарата к сети необходимо использовать сетевой кабель. Его необходимо подключить с требуемыми параметрами и проверить соединение, т.к. окисления могут привести к серьезным последствиям и даже поломке. Другой конец сетевого кабеля подключите к соответствующему разъему на аппарате через предохранитель. Заметьте, что аппараты MIG-357 DT2 и MIG-507 DT2 необходимо подсоединить к трехфазной питающей сети с напряжением 380 В. Затем проверьте с помощью мультиметра, чтобы технические данные напряжения и частоты питающей сети соответствовали техническим параметрам аппарата.

Сварочный аппарат оснащен мощным устройством компенсации напряжения. Аппарат работает нормально при колебании напряжения в пределах ±15% от номинального напряжения.

Желательно использовать кабель большего сечения при использовании длинных кабелей, чтобы уменьшить падение напряжения.

Убедитесь, что вентиляционные отверстия не заблокированы, иначе система охлаждения будет работать некорректно.

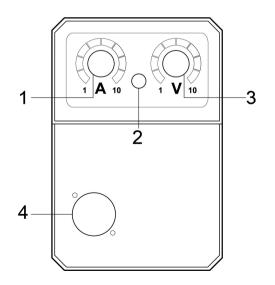
Используйте кабель заземления с сечением не менее 6мм2 для заземления корпуса аппарата.

В реальных условиях эксплуатации иногда не хватает длины силового и сварочного кабелей. Используйте данные в ниже приведенных таблицах.

Соотношение номинального тока и диаметр выходного кабеля (Макс. Температура проводника 60°C)

Номинальное	Номинальный ток максимального рабочего цикла							
сечение медного разъема (мм²)	100%	85%	60%	30%	20%			
16	105	115	135	190	235			
25	135	145	175	245	300			
35	170	185	220	310	380			
50	220	240	285	400	490			
70	270	195	350	495	600			
95	330	360	425	600	740			
120	380	410	490	690	850			
185	500	540	650	910	1120			

Соотношение сечения и длины сварочного кабеля


Номинальный ток	Сечение кабеля(мм²)								
(Д/А)	Д=20м	Д=30м	Д=40м	Д=50м	Д=60м	Д=70м	Д=80м	Д=90м	Д=100м
100	25	25	25	25	25	25	25	28	35
150	35	35	35	35	50	50	60	70	70
200	35	35	35	50	60	70	70	70	70
300	35	50	60	60	70	70	70	85	85
400	35	50	60	70	85	85	85	95	95
500	50	60	70	85	95	95	95	120	120
600	60	70	85	85	95	95	95	120	120

Подсоединение катушки со сварочной проволокой

Открутив крышку держателя, закрепите катушку сварочной проволоки на оси держателе проволоки. Убедитесь, что ничего не мешает подаче проволоки, а катушка плотно сидит на держателе.

Наденьте перчатки, распакуйте проволоку и отрежьте загнутый конец. Ослабьте винт прижимного ролика, отведите ручку прижимного винта на себя, поднимите верхние прижимные ролики, уложите проволоку в канавку подающего ролика и протяните через евроразъем для горелки. Верните ручку прижимного винта в исходное положение, затяните. Канавка ролика должна соответствовать диаметру проволоки.

Затем пропустите некоторое количество проволоки через сварочную горелку и нажмите на кнопку "Протяжка проволоки " (Рис5), чтобы проволока вышла из горелки.

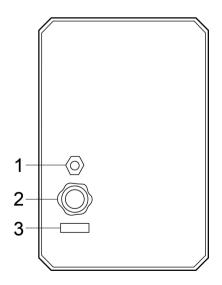


Рис6. Передняя панель механизма подачи

1 - Регулятор тока	1 - Разъем для подключения газа
2 - Кнопка протяжки проволоки	2 - Разъем для кабеля управления
3 - Регулятор напряжения	3 - Панель подключения (-) кабеля
4 - Евроразъем для подключения горелки	

6.1.1. ММА режим

Сварочные кабели, такие как кабель электрододержателя и кабель клеммы заземления, подключаются к соответствующим разъемам "+" и "-" в зависимости от применяемых электродов. Для прямой полярности кабель электрододержателя необходимо вставить в разъем "-" и закрепить, а кабель клеммы заземления — в разъем "+".Клемму заземления подсоедините к рабочей поверхности.

Выбирать полярность надо в зависимости от конкретной ситуации. При неправильном подключении появляются такие явления, как: нестабильная дуга, чрезмерное разбрызгивание и прилипание электрода. Для решения данных проблем измените соединение посредством перемены местами сварочных кабелей.

Кабели должны быть плотно подсоединены, так как слабое подключение снижает эффективность работы.

Внимание: осмотр и сборка оборудования могут производиться только тогда, когда аппарат отключен от сети.

Включение аппарата и подготовка к началу работы

После выполнения действий, указанных выше, переведите тумблер выключателя электросети в положение "Вкл." (на задней панели), аппарат начнет свою работу с включения дисплеев показаний тока, показаний напряжения и работы вентилятора.

Выставьте кнопкой режимов ММА/МІС режим "ММА" (Рис3).

Выберите необходимую величину сварочного тока, тип и размер электрода согласно толщины рабочей поверхности.

Обращайте внимание на упаковку электродов, где указывается их полярность и ток.

Соотношение диаметра электрода к сварочному току

Диаметр электрода (мм)	1.6	2.0	2.5	3.2	4.0	5.0	6.0
Сварочный ток(А)	25-40	40-65	50-80	100-130	160-210	200-270	260- 500

Процесс сварки

Держите маску перед лицом. Легким касанием оголенного кончика электрода зажгите дугу и приступите к работе. Затем, при появлении дуги установите дистанцию от свариваемого изделия, которая должна равняться диаметру электрода. Помните, что угол наклона электрода должен составлять 20-30°.

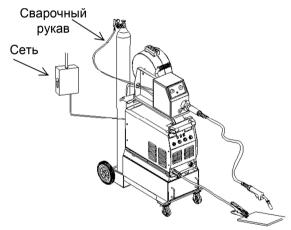
Окончание работы

После выполнения всех необходимых работ, выключите аппарат посредством перевода тумблера выключателя электросети в положение "Выкл." (на задней панели). Проверьте, ничего ли не тлеет вокруг. т.к. пожар может начаться не сразу, а через некоторое время.

6.1.2. MIG/MAG режим

Включение аппарата и подготовка к началу работы

Откройте соединительную коробку силового кабеля на задней панели аппарата и подсоедините силовой кабель при помощи винта, закрутив его. Затем закрепите силовой кабель в фиксирующем пазе на задней панели при помощи крышки и винтов.


Подключите соединительный разъем кабеля управления на задней панели механизма подачи проволоки (Рис.6 - п.2) к соединительному разъему на передней панели аппарата (Рис.1 - п.3) и закрепите их.

Подключите соединительный разъем кабеля на задней панели механизма подачи проволоки (Рис.6 - п.3) к (+) соединительному разъему аппарата (Рис1 - п.4) и закрутите по часовой стрелке.

Выберите правильный паз роликов в соответствии с диаметром проволоки. Заправьте проволоку в горелку и подключите ее к передней панели механизма подачи проволоки и закрутите разъем по часовой стрелке.

Подключите соединительный разъем клеммы заземления к отрицательному соединительному разъему, клемму прикрепите к рабочей поверхности.

Снабжение газом: Подсоедините газовый шланг к медному штуцеру (На задней стороне аппарата). Система газоснабжения, состоящая из газового баллона, редуктора и сварочного рукава, должна иметь плотные соединения, чтобы обеспечить надежную подачу газа, что является чрезвычайно важным для осуществления сварки в среде защитных газов (Примерная схема показана ниже).

Не забудьте заземлить аппарат для предотвращения возникновения статического электричества и утечки токов.

Внимание: осмотр и сборка оборудования могут производиться только тогда, когда аппарат отключен от сети.

При сварке в среде углекислого газа необходимо использовать постоянный ток обратной полярности, так как сварка током прямой полярности приводит к неустойчивому горению дуги.

После выполнения действий, указанных выше, переведите тумблер выключателя электросети в положение "Вкл." (на задней панели), аппарат начнет свою работу с включения питания и работы вентилятора.

Откройте вентиль на газовом баллоне. Для подачи газа нажмите кнопку на горелке и установите

расход защитного газа с помощью редуктора.

Выставьте переключатель режимов MMA/MIG в режим "MIG" (Рис3).

Используйте таблицы 6-7 в разделе "В помощь сварщику для выставления необходимых параметров.

Процесс сварки

Поднесите горелку к заготовке. Нажмите кнопку на горелке, касание металла обеспечит поджиг дуги. При наличии дуги приступайте к процессу сварки.

Окончание работы

После выполнения всех необходимых работ, выключите аппарат посредством перевода тумблера в положение "Выкл." (на задней панели). Проверьте, ничего ли не тлеет вокруг, т.к. пожар может начаться не сразу, а через некоторое время.

6.2 Эксплуатация

Вентиляция

Данный аппарат может создать сильный сварочный ток, у которого есть строгие требования охлаждения, которые нельзя достичь посредством только естественной вентиляции. Поэтому встроенный вентилятор необходим для эффективного охлаждения и устойчивой работы аппарата. Перед началом работ сварщик должен удостовериться, что жалюзи вентилятора (решетки) аппарата раскрыты и ничем не заблокированы. Минимальное расстояние между аппаратом и соседними объектами должно составлять 30 см. Хорошая вентиляция является залогом нормальной работы и продолжительной жизни аппарата.

Перегрузка

ПН - продолжительность нагрузки. ПН для данных аппаратов при работе на максимальном токе (для просмотра диапазона сварочного тока, пожалуйста, обратитесь к таблице 1. Основные характеристики), равна 60% из расчета10 минут, где 4 минуты - работа, 6 минут — отдых. Это значит, что при работе на максимальном токе более 4 минут происходит перегрузка аппарата с последующим нагревом. Перегрузка может значительно сократить срок эксплуатации аппарата.

Перенапряжение

Для просмотра диапазона напряжения электропитания аппарата, пожалуйста, обратитесь к таблице 1. «Основные характеристики». Оборудование имеет функцию автоматической компенсации напряжения сети, которая гарантирует, что сварочный ток изменяется в пределах данного диапазона. В случае, если входное напряжение сети превышает допустимое значение, возможно повреждение компонентов аппарата.

Перегрев

Внезапная остановка может произойти из-за перегрева. При перегреве аппарата процесс сварки автоматически останавливается. При этом, не отключая аппарат, дождитесь, пока внутренняя температура не станет соответствовать стандартному диапазону.

7. Техническое обслуживание

Внимание: следующие действия требуют достаточных профессиональных знаний в области сварки и электричества и всестороннем знании безопасности. Сварщики должны иметь свидетельства о квалификации. Удостоверьтесь, что входной кабель аппарата выключен из сети, прежде чем раскрыть сварочный аппарат.

- Периодически проверяйте, находится ли аппарат, особенно внутренняя схема и соединения кабелей и разъемов, в хорошем состоянии. Затяните расшатанные соединения. При обнаружении окисления, устраните наждачной бумагой и затем повторно соедините.
- Держите руки, волосы и инструменты далеко от движущихся частей, таких как вентилятор, дабы избежать травм или повреждение аппарата.
- Очищайте периодически от пыли сухим и чистым сжатым воздухом. Если аппарат находится в среде сильного задымления или загрязнения, чистите аппарат ежедневно. Давление сжатого воздуха должно быть надлежащего уровня, чтобы избежать повреждения мелких деталей.
- Избегайте дождя, воды и пара, пропитывающего аппарат. При попадании воды высушите аппарат и проверьте изоляцию (включая изоляцию между соединениями).
- Периодически проверяйте, находится ли покрытие изоляции всех кабелей в хорошем состоянии. При нахождении каких-либо повреждений изоляции кабеля, повторно оберните его или замените.
- Если аппарат не используется в течение долгого времени, поместите его в первоначальную упаковку и поставьте в сухое место.
- Проводите работы при закрытом корпусе аппарата.

Пожалуйста, обратите внимание на то, что:

- Некачественное техническое обслуживание может привести к снятию аппарата с гарантии.
- Аппарат может быть снят с гарантии в случае попыток самостоятельного ремонта, а также нарушения заводской пломбировки.

8. Диагностика неисправностей

Внимание: если аппарат не отработал свой гарантийный срок, не производите ремонт самостоятельно.

Общий анализ сбоев и их решение:

Сбой	Лричина Тричина	Решение
Аппарат включен, сигнальная лампа не горит, нет сварочного тока, встроенный	• Не работает выключатель сети	• Проверьте выключатель и при необходимости замените его
вентилятор не работает	• Отсутствует сетевое напряжение	 Проверьте провода на наличие повреждений Проверьте хорошо ли соединены элементы сетевого кабеля
	• Обрыв силового кабеля	• Замените силовой кабель
Аппарат включен, горит сигнальная лампа, нет сварочного тока, встроенный вентилятор не работает	• Напряжение сети превышает допустимое значение	 Проверьте напряжение сети. Выставите необходимое значение, согласно справочникам и таблицам
	• Ошибка в выборе питающей электросети 380B-220B	• Проверьте по таблице основных характеристик и выберете необходимую электросеть
	Перепады входного тока в связи с неисправностью сетевого кабеля и отключение аппарата в связи с запуском режима защиты от сбоев	 Проверьте сетевой кабель. При необходимости замените его Проверьте, хорошо ли соединены элементы сетевого кабеля
	• Частое включение и выключение аппарата в короткий промежуток времени приводит к запуску режима защиты от сбоев	• Выключите аппарат и снова включите его не ранее, чем через три минуты
Аппарат включен, сигнальная лампа не горит, встроенный вентилятор работает, осциллятор не действует,	• Внутренние неисправности	• Обратитесь за помощью в сервисный центр

поэтому невозможно поджечь		
дугу	• Включен режим защиты от сбоев	• Выключите источник тока, подождите, пока индикатор погаснет, и снова включите аппарат
Аппарат включен, горит сигнальная лампа, дуги нет	• Включен режим защиты от перегрева	Не отключая аппарат, дождитесь момента, когда погаснет индикатор, и можете снова приступать к сварке
	• Внутренние неисправности инвертора	 Обратитесь в сервисный центр
	• Повреждение обратного кабеля	• Замените его
	• Повреждение потенциометра	• Обратитесь в сервисный центр
Перепады рабочего тока в процессе сварки	• Имеют место сильные перепады напряжения в сети, либо пропадает контакт в сетевом кабеле	 Проверьте сетевой кабель на наличие повреждений; Проверьте, хорошо ли соединены элементы сетевого кабеля
Чрезмерное разбрызгивание при ручной сварке	• Неверно выбрана полярность подключения сварочных кабелей	• Поменяйте местами сварочные кабели, подсоединенные к разъемам "+" и "-"
В процессе сварки возникает чрезмерный уровень напряжения. Трудности при работе с электродами с щелочным покрытием	• Неверно выбрана полярность подключения сварочных кабелей	• Поменяйте местами сварочные кабели, подсоединенные к разъемам "+" и "-"

Примечание: при возникновении проблем, не указанных в данной таблице, позвоните в сервисный центр.

9. В помощь сварщику

Данные советы и таблицы помогут вам в различных ситуациях, например, помогут вам подобрать правильный электрод для сварки, избежать некоторых дефектов или оказать первую помощь.

ММА режим

Таблица 1. Настройка сварочного тока в зависимости от положения сварки

Покрытие	Диаметр	Сварочный ток (А) при положении шва				
электрода	электрода (мм)	нижнем	вертикальном	потолочном		
Основное	2,5	70-90	60-80	55-75		
	3	90-110	80-100	70-90		
	4	120-170	110-150	95-135		
	5	170-210	150-190	-		
Рутиловое	2,5	70-90	60-80	55-75		
	3	90-130	80-115	75-105		
	4	140-190	125-170	110-155		
	5	180-230	165-205	-		

Таблица 2. Настройка сварочного тока в зависимости от полярности тока

Диаметр	Си	ла тока (A)	Hamanus va musa (B)
электрода (мм)	Обратная	Прямая	Напряжение на дуге (В)
2	20-100	65-160	10-30
3	100-160	140-180	20-40
4	140-220	250-340	30-50
5	220-280	270-360	40-60

Таблица 3. Ориентировочные режимы сварки в зависимости от типа соединения и толщины

		Соединение							
Толщина	Сть	ыковое	Тавј	оовое	Нахлесточное				
металла (мм)	Свароч. ток (A)	Диаметр элек-да (мм)	Сварочный ток (A)	Диаметр электрода (мм)	Сварочный ток (A)	Диаметр электрода (мм)			
1	25-35	2	30-50	2	30-50	2,5			
1,5	35-50	2	40-70	2-2,5	35-75	2,5			
2	45-70	2,5	50-80	2,5-3	55-85	2,5-3			
3	70-120	3	70-130	3	75-130	3			
4	120-160	3-4	120-160	3-4	120-180	3-4			
5	130-180	3-4	130-180	4	130-180	4			
10	140-220	4-5	150-220	4-5	150-220	4-5			
15	160-250	4-5	160-250	4-5	160-250	4-5			
20	160-340	4-6	160-340	4-6	160-340	4-6			

Таблица 4. Зависимость диаметра сварочного провода от сварочного тока

Сварочный кабель					
Марок	КГ, КОГ				
Сварочный Сечение					
ток (А)	провода (мм²)				
100	10				
200	25				
300	35				
400	50				
500	70				

Таблица 5. Влияние сварочного тока, напряжения дуги и скорости сварки на форму и размеры шва

С увеличением сварочного тока глубина провара увеличивается, ширина шва почти не изменяется. С повышение напряжения ширина шва резко увеличивается, а глубина провара уменьшается. Это важно учитывать при сварке тонкого металла. Несколько уменьшается и выпуклость (усиление) шва. При одном и том же напряжении ширина шва при сварке на постоянном токе (особенно обратной полярности) значительно больше, чем ширина шва при сварке на переменном токе. С увеличением скорости (до 40-50 м/ч), сначала глубина провара возрастает, затем уменьшается. При скорости более 70-80 м/ч основной металл не успевает прогреваться, и по обеим сторонам шва возможны подрезы.

MIG/MAG режим

Таблица 6. Выбор подачи проволоки и напряжения в зависимости от материала, диаметра проволоки и газа

_	проволоки и таза											
Пр	оцесс/тол метал.	-	1,0	мм	1,5	мм	2,0	мм	3,0 м	М	4,0	мм
Мате- риал	Диам. (мм)	Газ	Подача (м/мин)	Напряж.	Подача (м/мин)	Напряж.	Подача (м/мин)	Напряж. (B)	Подача (м/мин)	Напряж.	Подача (м/мин)	Напряж.
Fe	0,8	CO ₂	2,5	19,0	4,5	19,5	7,0	21,0	11,0	27,0	13,0	29,0
Fe	1,0	CO ₂	2,0	18,0	2,5	19,0	3,0	20,0	4,5	21,0	6,0	22,5
Fe	1,2	CO ₂	1,0	18,0	2,0	20,0	2,5	21,0	3,5	22,0	4,5	23,0
Fe	0,8	ArCO ₂	3,0	16,0	6,0	18,0	7,5	19,5	11,0	20,0	14,0	26,0
Fe	1,0	ArCO ₂	2,0	15,0	3,0	16,0	4,0	17,0	6,0	19,0	8,0	20,0
Fe	1,2	ArCO ₂	1,5	16,5	2,5	17,5	3,5	18,0	4,5	20,5	5,5	20,5
Fe	1,6	ArCO ₂	-	-	1,0	17,0	2,0	18,0	2,5	18,5	3,0	19,5
CrNi	1,0	ArCO ₂	3,0	15,0	4,0	16,0	6,0	17,0	8,5	20,0	9,0	25,0
CrNi	1,2	ArCO ₂	2,0	15,0	3,0	16,0	3,5	16,5	6,0	18,0	8,0	24,0
Al	1,0	Ar	4,0	14,5	6,0	15,0	7,5	16,0	9,0	19,0	11,0	22,0
AI	1,2	Ar	3,5	13,0	5,0	15,0	8,0	16,0	9,0	17,0	10,0	18,0

Процесс/толщина метал.			6,0	мм	10,0 мм		
Мате- риал	Диам.	Газ	Подача	Напряж.	Подача	Напряж.	
Fe	0,8	CO ₂	18,0	30,0	24,0	37,0	
Fe	1,0	CO ₂	9,0	24,5	14,0	32,0	
Fe	1,2	CO ₂	7,5	28,5	11,0	36,0	
Fe	0,8	ArCO ₂	18,0	31,0	24,0	33,0	
Fe	1,0	ArCO ₂	11,5	26,5	16,0	30,0	
Fe	1,2	ArCO ₂	8,0	29,0	10,0	32,0	
Fe	1,6	ArCO ₂	4,0	22,0	5,5	29,0	
CrNi	1,0	ArCO ₂	10,0	27,0	-	-	
CrNi	1,2	ArCO ₂	10,0	24,0	15,0	31,0	
Al	1,0	Ar	13,0	25,0	15,0	27,0	
Al	1,2	Ar	13,0	23,0	15,0	26,0	

Таблица 7. Режимы полуавтоматической сварки низкоуглеродистой стали (защитный газ – углекислый газ)

1/2	Катет Диаметр		Режим сварки	l	D		
катет шва (мм)	Диаметр проволоки (мм)	Сила тока (A)	Напряжение на дуге (В)	Расход газа (л/мин)	Вылет электрода (мм)	Производительность (г/с)	
0	0,8	100	20-22	8	8-10	0,43	
2	1,0	110	19-20	ď	10-12	0,41	
	1,0	150	21-22		10-12	0,82	
3	1,2	180	22-23	8-10	12-15	1,09	
	1,4	200	21-22		14-16	0,98	
4	1,2	200	22-23	10-14	12-15	0,99	
4	1,4	270	24-25	10-14	15-18	1,09	
5-6	1,4	320	27-28	14-20	18-20	1,36	
J-6	1,6	380	27-29	14-20	18-20	1,44	

Общее

Таблица 8. Зависимость пиковой мощности генератора от диаметра электрода

-	
Диаметр электрода (мм)	Пиковая мощность генератора (кВт)
2	2,5
3	3,5
4	4,5
5	5,5

Таблица 9. Оказание первой медицинской помощи пострадавшему при несчастном случае

Таблица 9. Оказание первой медицинской помощи пострадавшему при несчастном случае					
Название несчастного случая	Способ оказания первой медицинской помощи				
Термические ожоги	Ожог без нарушения целостности ожоговых пузырей: Промывайте поврежденный участок под холодной водой в течение 10-15 минут. Приложите к поврежденному участку холод (например, лед) на 20-30 минут. Ожог с нарушением целостности ожоговых пузырей: Поврежденный участок прикрыть сухой чистой тканью. Приложите к поврежденному участку холод (например, лед). Внимание: запрещается промывать водой при нарушении целостности ожоговых пузырей				
Ранение глаз или век	 Накрыть глаз чистой салфеткой или платком. Зафиксировать салфетку повязкой и прикрыть этой же повязкой второй глаз для прекращения движения глазных яблок. Внимание: запрещается промывать рану. Обработать 1% спиртовым раствором бриллиантового зеленого (зеленка) 				

Переломы костей	•	Зафиксировать конечность с помощью складных шин.
конечностей	•	При открытых переломах сначала наложить повязку и только затем – шину.
Ранение конечности	•	Накрыть рану чистой салфеткой.
	•	Перебинтовать салфетку или приклеить лейкопластырем.
	Вни	мание: Промывать рану водой или спиртовым раствором запрещается

Примечание: знание способов оказания первой помощи поможет вам или другому пострадавшему человеку в начальный момент несчастного случая, что облегчит ваше (или другого пострадавшего человека) выздоровление в будущем. Пожалуйста, внимательно изучите эту таблицу.

Таблица 10. Дефекты сварных швов

	0		Способы предупреждения
Наименование	Описание	Причина	и устранения
Кратеры	Усадочная раковина	Обрыв дуги.	Перед сваркой:
	в конце валика	Неправильное	Отсутствуют.
	сварного шва, не	выполнение	Во время сварки:
	заваренная до или во	конечного	Заварить кратер одним из следующих приемом.
	время выполнения	участка шва.	Повторным зажиганием дуги и заполнением
	последующих		кратера жидким металлом.
	проходов. Является		Возвратно-поступательным движением
	очагом развития		электрода.
	трещин.		Способ устранения:
			Повторно заварить кратер.
Поры	Несплошность,	Быстрое	Перед сваркой:
	образованная газами,	охлаждение	Электроды не должны иметь окисленную
	задержанными в	шва.	поверхность стержня.
	расплавленном	Загрязнение	Тщательно защищать кромки от ржавчины и
	металле.	кромок	грязи.
		маслом,	Прокаливать покрытые электроды, согласно
		ржавчиной и	паспортным режимам для каждого типа и марки.
		т.п.	Во время сварки:
			Вести сварку преимущественно в нижнем
			положении.
			Использовать режимы сварки с минимальной
			температурой сварочной ванны.
			Перемешивать сварочную ванну.
			Выполнять швы с увеличенной шириной
			сварочной ванны.
			Способ устранения:
			Дефектный участок вырубают или вычищают и
			вновь заваривают.
Включения	Шлак, попавший в	Грязь на	Перед сваркой:
шлака	металл сварного шва.	кромках.	Использовать электроды, обеспечивающие
		Малый	высокую жидкотекучесть металла сварочной
		сварочный ток.	ванны.
		Большая	Не использовать электроды с тонким и особо
		скорость	тонким покрытиями.
		сварки.	Применять электроды с покрытиями,
			обеспечивающие низкую вязкость и хорошую

r		ı	
			смачиваемость.
			Во время сварки:
			Перемешивать жидкий металл сварочной ванны.
			Формировать шов минимальной ширины.
			Использовать режимы сварки, при которых время
			существования сварочной ванны минимально.
			Способ устранения:
			Дефектный участок удалить шлифовальным
			инструментом или заварить.
Несплавления	Отсутствие	Плохая	Перед сваркой:
	соединения между	зачистка	Качественно готовить стык под сварку с
	металлом сварного	кромок.	соблюдением его геометрических размеров.
	шва и основным	Большая	Зачищать выпуклые валики при многопроходной
	металлом или между	длина дуги.	сварке.
	отдельными	Недостаточ-	Тщательно очищать свариваемые поверхности от
	валиками сварного	ный сварочный	ржавчины и оксидов.
	шва. Является	ток.	Во время сварки:
	концентратором	Большая	Строго соблюдать режимы сварки.
	напряжения,	скорость	Способ устранения:
	вызывающим	сварки.	Если несплавление доступно для повторной
	развитие трещин.	сварки.	заварки, то корень шва в месте дефекта
	развитие трещин.		вычищают и заваривают повторно.
Наплыв	Избыток	Большой	Перед сваркой:
Пашьь	наплавленного	сварочный ток.	
			Выбрать оптимальный режим сварки.
	металла сварного шва, натекший на	Неправильный наклон	Строго соблюдать требования технологического процесса.
	· ·		• •
	поверхность	электрода. Излишне	Использовать соответствующие сварочные
	основного металла, но не сплавленный с		материалы.
		длинная дуга.	Во время сварки:
	ним.		Корректировать режим сварки в зависимости от
			схемы формирования шва.
			Вести сварку строго по середине разделки
			кромок.
			Способ устранения:
			Чрезмерную выпуклость удалить шлифовальным
			инструментом.
Свищи	Трубчатая полость в	Низкая	Перед сваркой:
	металле сварного	пластичность	Использовать покрытые электроды,
	шва из-за выделений	металла шва.	обеспечивающие пониженную вязкость металла
	газа. Форма и	Образование	сварочной ванны.
	положение свища	закалочных	Прокаливать электроды согласно паспортным
	зависят от режима	структур.	режимам.
	затвердевания и	Напряжение от	Тщательно зачищать кромки от ржавчины и грязи.
	вида газа. При	неравномерно-	Во время сварки:
	действии	го нагрева.	Сваривать швы в " нижнем " положении или
	малоцикловых		положении в " лодочку ".
	рабочих нагрузок		При многослойной сварке формировать более
	может стать		широкие швы.
	причиной		Применять технику сварки с перемешиванием
	образования трещин.		жидкого металла сварочной ванны.
			Способ устранения:
	•	•	

			Дефектный участок вырубают или вычищают и
B	.	F	вновь заваривают.
Подрезы	Продольное	Большой	Перед сваркой:
	углубление	сварочный ток.	Подогревать свариваемые кромки.
	отдельными	Длинная дуга	Использовать сварочные материалы,
	участками на	при сварке	улучшающие смачиваемость расплава.
	наружной	угловых швов	Использовать приспособления для
	поверхности валика	– смещение	формирования шва в оптимальном
	сварного шва.	электрода в	пространственном положении.
	Является	сторону	Во время сварки:
	концентратором	вертикальной	Вести сварку наклонным электродом углом
	напряжения.	стенки.	вперед.
			Точно ориентировать электрод по оси шва и
			длине дуги.
			Использовать инверторный источник питания.
			Способ устранения:
			Дефектный участок удалить шлифовальным
			инструментом и заварить повторно
			облицовочным швом.
Непровар	Несплошность по	Малый угол	Перед сваркой:
Попровар	всей длине шва или	скоса	Правильно выбрать вид разделки кромок.
	на его отдельном	вертикальных	Собрать кромки с соблюдением их
	участке,	кромок.	геометрических размеров.
	,	•	
	возникающая из-за	Малый зазор	Использовать кантователи для удобного
	неспособности	между ними.	расположения шва.
	расплавленного	Загрязнение	Во время сварки:
	металла проникнуть	кромок.	Строго соблюдать режимы сварки, в частности,
	внутрь соединения.	Недостаточ-	по сварочному току.
	Является	ный сварочный	Вести сварку на короткой дуге.
	концентратором	ток.	Вести сварку в "нижнем"положении или в
	напряжения,	Завышенная	положении в " лодочку ".
	вызывающим	скорость	Способ устранения:
	развитие трещин.	сварки.	Если несплавление доступно для повторной
			заварки, то корень шва в месте дефекта
			вычищают и заваривают повторно.
Прожог	Вытекание металла	Большой ток	Перед сваркой:
	сварочной ванны, в	при малой	Использовать специальные подкладки.
	результате чего	скорости	Оптимизировать режим сварки по скорости и
	образуется сквозное	сварки.	мощности источника нагрева.
	отверстие в	Большой зазор	Применять кантователи, вращатели для выбора
ĺ	сварочном шве.	между	пространственного положения, исключающего
ĺ	Нарушает	кромками.	прожог.
ĺ	сплошность сварного	Под	Во время сварки:
ĺ	шва.	свариваемый	Применять импульсно-дуговые режимы сварки.
		шов плохо	Вести дуговую сварку "вперед" углом, а газовую
		поджата	"левым" способом.
		флюсовая	Строго соблюдать постоянство зазора в стыке.
		подушка или	Способ устранения:
		медная	Недостающий металл поверхности наплавить
		подкладка.	дополнительно.
		подкладка.	Натек удалить шлифовальным инструментом.
	1	l .	пател удалить шлифовальным инструментом.

Неравномерная	Отклонение формы	Неустойчивый	Перед сваркой:
форма шва	наружных	режим сварки.	Выбрать источник питания с оптимальной
	поверхностей	Неточное	вольтамперной характеристикой.
	сварного шва или	направление	При химической неоднородности основного
	геометрии	электрода.	металла использовать инверторный источник
	соединения от	F - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	питания.
	установленного		Исключить влияние колебаний напряжения
	значения.		питающей сети.
			Во время сварки:
			Поддерживать стабильность параметров режима
			сварки.
			Вести сварку на короткой дуге.
			Способ устранения:
			Дефектный участок удалить шлифовальным
			инструментом и заварить повторно
			облицовочным швом.
Трещины	Несплошность,	Резкое	Перед сваркой:
	вызванная местным	охлаждение	Правильно выбрать основной металл и
	разрушением шва и	конструкции.	сварочные материалы.
	его охлаждением,	Высокое	Выбрать оптимальный режим.
	либо действием	напряжение в	Использовать приспособления для снижения
	нагрузок. Является	жестко	напряжений, возникающие при сварке.
	концентратором	закрепленных	Во время сварки:
	напряжения и очагом	конструкциях.	Применять технику сварки, обеспечивающую
	разрушения.	Повышенное	оптимальный термический цикл и геометрию
		содержание	сварочной ванный.
		серы или	По возможности обеспечить измельчение зерен
		фосфора.	материала сварочной ванны в период ее
			кристаллизации.
			Способ устранения:
			Место образования трещины удалить
			облицовочным инструментом.
			Образовавшуюся полость заварить.

Таблица 11. Влияние сварочного тока, напряжения дуги и скорости сварки на форму и размеры шва

С увеличением сварочного тока глубина провара увеличивается, ширина шва почти не изменяется. С повышение напряжения ширина шва резко увеличивается, а глубина провара уменьшается. Это важно учитывать при сварке тонкого металла. Несколько уменьшается и выпуклость (усиление) шва. При одном и том же напряжении ширина шва при сварке на постоянном токе (особенно обратной полярности) значительно больше, чем ширина шва при сварке на переменном токе. С увеличением скорости (до 40-50 м/ч), сначала глубина провара возрастает, затем уменьшается. При скорости более 70-80 м/ч основной металл не успевает прогреваться, и по обеим сторонам шва возможны подрезы.

Мы постоянно улучшаем данное сварочное оборудование, поэтому некоторые части могут быть изменены для достижения лучшего качества, но главные функции и операции останутся без изменений. Мы надеемся на ваше понимание.

10. Гарантийный талон

Гарантийные обязательства

Внимание: гарантия действительна только на территории РФ.

- Претензии по качеству вашего оборудования принимаются в пределах гарантийного срока (12 месяцев с даты продажи, но не более 18 месяцев с даты производства). Ремонт или замена деталей, преждевременно вышедших из строя по вине предприятия-изготовителя, осуществляется бесплатно при условии соблюдения требования по монтажу, эксплуатации и периодическому техническому обслуживанию.
- 2. Прием изделия в гарантийную мастерскую производится только при наличии всех комплектующих.
- 3. Предметом гарантии не является неполная комплектация изделия, которая могла быть обнаружена при продаже изделия. Претензии от третьих лиц не принимаются.
- 4. Гарантийные обязательства не распространяются на расходные материалы.
- 5. Гарантийные обязательства не распространяются на аппараты:
 - имеющие повреждения, вызванные различными внешними воздействиями (механическим), а так же проникновением внутрь изделия посторонних предметов (насекомых, животных, пыли) или жидкостей;
 - подвергавшиеся вскрытию, ремонту или модификации вне уполномоченной сервисной мастерской;
 - имеющие повреждения защитной пломбы (наклейки);
 - использовавшиеся не по назначению;
 - поврежденные в результате подключения к сети с несоответствующими номинальными параметрами заявленными в руководстве по эксплуатации.
- 6. Покупателю может быть отказано в гарантийном ремонте если:
 - гарантийный талон утрачен или в него были внесены несанкционированные дополнения, исправления, подчистки;
 - невозможно идентифицировать серийный номер оборудования, печать или дату продажи на гарантийном талоне.
- 7. Использование с автономными дизельными или бензиновыми генераторами требует дополнительного внимания к условиям эксплуатации. Убедитесь, что используемый генератор удовлетворяет требованиям по мощности и параметрам электросети. Неисправность аппарата, возникшая при подключении к генератору, имеющему нестабильные выходные характеристики, не покрываются гарантией. Рекомендуем принять необходимые меры для сохранности аппарата: установка фильтров, стабилизаторов и т.д.

Заводской номер:					
Печать продавца:					
Подпись продавца:					
Отметка о ремонте:					
Отметка о ремонте:					

ОСНОВНЫЕ ПРЕИМУЩЕСТВА ПОЛУАВТОМАТОВ MIG PROFI:

- ПРОФЕССИОНАЛЬНАЯ СЕРИЯ
- ЦИФРОВОЙ ДИСПЛЕЙ
- ЗАЩИТА ОТ ПЕРЕГРЕВА
- ГОРЯЧИЙ СТАРТ
- ФОРСАЖ ДУГИ

УЗНАТЬ БОЛЬШЕ:

(495) 728-43-44 BARSWELD.ru

